ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ И ЭКОЛОГИЯ

УДК 547.362

ТЕХНОЛОГИЯ ПОЛУЧЕНИЯ МОНО- И ДИАЛКОКСИБЕНЗАЛЬДЕГИДОВ

Е.А. Дикусар, В.И. Поткин, М.Ю. Мурашева, С.К. Петкевич, С.Г. Стёпин

Иммобилизация душистых веществ на текстильных материалах позволяет придавать устойчивый аромат тканям. Разработка душистых веществ для создания подобных материалов является актуальной задачей легкой промышленности.

Гидроксибензальдегиды ванилинового ряда широко используются в пищевой и парфюмерной промышленности в качестве душистых веществ и отдушек [1-3]. Сам ванилин, легко получаемый из дешевого, доступного и возобновляемого сырья или отходов целлюлозно-бумажной промышленности [4, 5], а также его гомологи и аналоги: ванилаль, изованилин и ортованилин — благодаря присутствию в их молекулах гидроксильной и альдегидной групп могут служить удобными и доступными исходными соединениями (или синтонами) для синтеза на их основе целого ряда новых химических веществ, обладающих комплексом ценных и полезных свойств [4-6].

данной работы является разработка удобного и масштабируемого технологического способа получения моно- и диалкоксибензальдегидов (Іб, ІІб-д, ІІІб, в, IVб-г, Vб, в, VIб-н, VIIб-м, VIIIб, в) с целью их дальнейшего использования в качестве душистых соединений и исходных веществ для дальнейших химических модификаций и превращений [6, 7]. В качестве исходных альдегидофенолов были использованы салициловый альдегид (2-гидроксибензальдегид) (Іа), 4-гидроксибензальдегид (Іб), ортованилин (2-гидрокси-3-метоксибензальдегид) (IIIa), β-резорциловый альдегид (2,4дигидроксибензальдегид) (IVa), изованилин (3-гидрокси-4-метоксибензальдегид) (Va), (4-гидрокси-3-метоксибензальдегид) (VIa), ванилаль (4-гидрокси-3этоксибензальдегид) (VIIa), протокатеховый альдегид (3,4-дигидроксибензальдегид) (VIIIa) [8, 9].

Целевые моно- (Іб, ІІб-д) и диалкоксибензальдегиды (ІІІб, в, ІVб-г, Vб, в, VІб-н, VІІб-м, VІІІб, в) получали по реакции Вильямсона [10], специально модифицированной для достижения высокой степени конверсии исходных гидроксибензальдегидов (Іа-VІІІа) и чистоты образующихся соединений. Синтез проводили кипячением смеси исходных гидрокси- или дигидроксибензальдегидов (Іа-VІІІа), соответствующих бромалкилов, бромциклоалкилов или бензилхлорида, безводного карбоната калия в среде 96%-ного этанола в течение 10 – 12 ч. Для предотвращения окисления альдегидной группы в карбоксильную в процессе проведения синтеза применяли барботирование через кипящую реакционную смесь слабого тока азота. Дополнительную очистку полученных моно- (Іб, ІІб-д) и диалкоксибензальдегидов (ІІІб, в, ІVб-г, Vб, в, VІб-н, VІІб-м, VІІІб, в) проводили низкотемпературной кристаллизацией из смеси бензола и гексана, или колоночной хроматографией на оксиде алюминия (ІІ степени активности по Брокману, нейтральный), элюент – бензол [11].

CHO
$$R^{2} \text{Br (Cl), } K_{2} \text{CO}_{3}$$

$$R^{1} \qquad 96\% \text{ EtOH}$$

 $R = H, 2-R^1 = OH (Ia), H-Bu (Iб); R = H, 4-R^1 = OH (IIa), H-Bu (IIб), (CH_2)_{14}Me (II6),$ цикло- C_6H_{11} (II2), $CH_2C_6H_5$ (IId); $3-R = OMe, 2-R^1 = OH$ (IIIa), H-Bu (IIIb), $CH_2C_6H_5$ (IIIb); $2-R = 4-R^1 = OH$ (IVa), H-Bu (IVb), H-Bu (IVb), H-Bu (Vb), H-Bu (Vb),

Выход синтезированных по данному методу моно- и диалкоксибензальдегидов (Іб, ІІбд, ІІІб, в, ІVб-г, Vб, в, VІб-н, VІІб-м, VІІІб, в) составлял 66 – 89 %. Попытки использования вместо бромалкилов или бромциклоалкилов (R^2Br) соответствующих хлоралкилов или хлорциклоалкилов (R^2CI), за исключением бензилхлорида, оказались безуспешными и не приводили к образованию моно- и диалкоксибензальдегидов.

Состав и строение синтезированных (Іб, ІІб-д, ІІІб, в, ІVб-г, Vб, в, VІб-н, VІІб-м, VІІІб, в) доказано данными спектров ИК и ЯМР I I H , данными элементного анализа и хроматомасс-спектрометрии. ИК спектры синтезированных соединений записаны на ИК Фурьеспектрофотометре Protege-460 фирмы "Nicolet" в тонком слое или в I I

Ряд диалкоксибензальдегидов (IVб-г, Vб, в, VIб-н, VIIб-м, VIIIб, в) обладают интенсивными ароматами фруктово-ягодной или цветочной направленности и являются перспективными соединениями для использования их в качестве ароматизаторов, душистых веществ и отдушек в пищевой и парфюмерной промышленности [12-15]. Моно-и диалкоксибензальдегиды (Iб, IIб-д, IIIб, в, IVб-г, Vб, в, VIб-н, VIIб-м, VIIIб, в) могут служить доступными исходными соединениями для создания на их основе новых биологически активных веществ и разработки лекарственных препаратов медицинского или сельскохозяйственного назначения [16-18].

Исходные альдегидофенолы были использованы (Ia-VIIIa) после предварительной очистки перегонкой или перекристаллизацией и имели физико-химические константы, соответствующие литературным данным [9].

Моно- (Іб, ІІб-д) и диалкоксибензальдегиды (ІІІб, в, ІVб-г, Vб, в, VІб-н, VІІб-м, VIII6, в). Смесь моль гидрокси-(Ia-IIIa, Va-VIIa) 0.05 моль дигидроксибензальдегида (IVa, VIIIa), 0,11 моль соответствующего бромциклоалкила или бензилхлорида и 0,11 моль безводного карбоната калия кипятили с обратным холодильником в среде 96%-ного этанола (200 – 250 мл) в течение 10 – 12 ч. Через кипящую реакционную смесь применяли барботирование слабого тока азота. После охлаждения, реакционную смесь разбавляли 500 мл 10%-ного водного раствора хлорида натрия. Выпавшие из реакционной смеси в виде осадков кристаллические целевые продукты (ІІв, д, ІІІв, ІVб, г, Vб, в, VІг, ж-к, н, VІІг, ж-и, м) отделяли фильтрованием на стеклянном пористом фильтре, промывали водой (2-3 л), сушили при пониженном давлении (50 – 100 мм рт. ст. над безводным сульфатом магния или сульфатом натрия. Жидкие продукты (Іб, ІІб, г, ІІІб, IVв, VІв-е, л, м, VІІб, в, д, е, к, л) экстрагировали хлористым метиленом (3 х 150 мл), растворитель удаляли, остатки вакуумировали. Дополнительную очистку полученных моно- (Іб, ІІб-д) и диалкоксибензальдегидов (ІІІб, в, IVб-г, Vб, в, VIб-н, VIIб-м, VIIIб, в) проводили низкотемпературной кристаллизацией

из смеси бензола и гексана, или колоночной хроматографией на оксиде алюминия (II степени активности по Брокману, нейтральный), элюент – бензол.

2-н-Бутоксибензальдегид (Іб). Выход 89 %, d₂₀²⁰ 0.9846, n_D²⁰ 1,5360. ИК спектр, v, см¹: 3104, 3070, 3040, 3015 (*CHAr*); 2959, 2935, 2873 (*CHAlk*); 2755 (*CHCHO*); 1674, 1665, 1646 (*C=O*); 1620, 1599, 1582, 1386 (*Ar*); 1487, 1459 (*CH*₂); 1286, 1243, 1189, 1161, 1102, 1006, 972 (*C-O*); 883, 831, 758, 721 (*CHAr*). Спектр ЯМР ¹*H*, δ, м.д.: 0,98 т (*3H*, *Me*), 1,25 – 2,05 м [*4H*, (*CH*₂)₂], 4,06 т (*2H*, *CH*₂*O*), 6.75 – 7.95 м (*4H*, *C*₆*H*₄), 10,51 с (*1H*, *CHO*). Массспектр: m/z 178 [М]+. Найдено, %: *C* 74,38; *H* 8.10. *C*₁₁*H*₁₄*O*₂. Вычислено, %: *C* 74,13; *H* 7,92. М 178.23.

4-н-Бутоксибензальдегид (Пб). Выход 87 %, d_{20}^{20} 0,9961, n_D^{20} 1,5405. ИК спектр, v, см 1 : 3070, 3065, 3013 (*CHAr*); 2959, 2936, 2873, 2828 (*CHAlk*); 2736 (*CHCHO*); 1695 (*C=O*); 1602, 1577, 1510, 1394 (*Ar*); 1468, 1428 (*CH*₂); 1313, 1258, 1216, 1160, 1110, 1005, 970 (*C-O*); 833 (*CHAr*). Спектр ЯМР I *H*, δ , м.д.: 0,96 т (*3H*, *Me*), 1,25 – 2,04 м [*4H*, (*CH*₂)₂], 4,01 т (*2H*, *CH*₂0), 6,75 – 7,95 м (*4H*, *C*₆*H*₄), 9.85 с (*1H*, *CHO*). Масс-спектр: m/z 178 [М]+. Найдено, %: *C* 74,33; *H* 8,13. C_{II} *H*1₄*O*₂. Вычислено, %: *C* 74,13; *H* 7,92. М 178,23.

4-н-Пентадеканоксибензальдегид (IIB). Выход 89 %, т. пл. 45 – 46 °C. ИК спектр, ν, см⁻¹: 3070, 3035, 3015 (*CHAr*); 2954, 2916, 2849, 2810 (*CHAlk*); 2739 (*CHCHO*); 1688 (*C=O*); 1606, 1580, 1510, 1403 (*Ar*); 1470, 1430 (*CH*₂); 1318, 1268, 1218, 1164, 1109, 1011, 972 (*C-O*); 859, 831, 718 (*CHAr*). Спектр ЯМР ¹*H*, δ, м.д.: 0,89 т (*3H*, *Me*), 1,26 уш. *c* [24H, (*CH*₂)₁₂], 1.95 т (2H, *CH*₂), 4,14 т (2H, *CH*₂O), 6,72 – 7,98 м (4H, *C*₆H₄), 9,84 *c* (1H, *CHO*). Масс-спектр: m/z 332 [M]+. Найдено, %: *C* 79,94; *H* 10,15. *C*₂₂H₃₆O₂. Вычислено, %: *C* 79,46; *H* 10,91. М 332,52.

4-Циклогексилоксибензальдегид (Пг). Выход 66 %, d_{20}^{20} 1,1012, n_D^{20} 1,5610. ИК спектр, v, см⁻¹: 3073, 3026 (*CHAr*); 2936, 2858 (*CHAlk*); 2735 (*CHCHO*); 1689 (*C=O*); 1600, 1574, 1507 (*Ar*); 1449, 1429 (*CH*₂); 1309, 1258, 1217, 1160, 1110, 1043, 1020, 967 (*C-O*); 860, 834 (*CHAr*). Спектр ЯМР ¹*H*, δ , м.д.: 1,10 – 2,30 м [10H, (*CH*₂)₅], 4.37 уш. с (1H, *CH*), 6,72 – 7,95 м (4H, *C*₆H₄), 9,86 с (1H, *CHO*). Масс-спектр: m/z 204 [М]+. Найдено, %: *C* 76,80; *H* 8,07. $C_{13}H_{16}O_2$. Вычислено, %: *C* 76,44; *H* 7,90. М 204,26.

4-Бензилоксибензальдегид (Пд). Выход 83 %, т. пл. 74 – 75 °C. ИК спектр, v, см⁻¹: 3090, 3080, 3055, 3036, 3008 (*CHAr*); 2940, 2829, 2803 (*CHAlk*); 2745 (*CHCHO*); 1687 (*C* = *O*); 1601, 1575, 1509, 1425, 1394 (*Ar*); 1462, 1452 (*CH*₂); 1330, 1301, 1261, 1214, 1165, 1110, 1018 (*C-O*); 867, 832, 735, 696 (*CHAr*). Спектр ЯМР ¹*H*, δ, м.д.: 5,15 с (*2H*, *CH*₂*O*), 7,07 – 7,85 м (*9H*, *C*₆*H*₄ *u C*₆*H*₅), 9,89 с (*1H*, *CHO*). Масс-спектр: m/z 212 [M]+. Найдено, %: *C* 79,48; *H* 5,93. *C*₁₄*H*₁₂*O*₂. Вычислено, %: *C* 79,22; *H* 5,70. M 212,24.

2-н-Бутокси-3-метоксибензальдегид (IIIб). Выход 80 %, d_{20}^{20} 0,9451, n_{D}^{20} 1,5235. ИК спектр, v, cm⁻¹: 3090, 3070, 3005 (*CHAr*); 2959, 2936, 2871, 2841 (*CHAlk*); 2736 (*CHCHO*); 1692 (*C=O*); 1594, 1584, 1483, 1378 (*Ar*); 1456, 1442 (*CH*₂); 1312, 1265, 1249, 1185, 1067, 1022 (*C-O*); 785, 764 (*CHAr*). Спектр ЯМР ¹*H*, δ , м.д.: 0.96 т (*3H*, *Me*), 1,25 – 1,98 м [*4H*, (*CH*₂)₂], 3,87 с (*3H*, *MeO*), 4,12 т (*2H*, *CH*₂*O*), 6,90 – 6,55 м (*3H*, *C*₆*H*₃), 10,45 с (*1H*, *CHO*). Масс-спектр: m/z 208 [M]+. Найдено, %: *C* 69,45; *H* 7,81. $C_{12}H_{16}O_3$. Вычислено, %: *C* 69,21; *H* 7,74. М 208,25.

2-Бензилокси-3-метоксибензальдегид (IIIв). Выход 74 %, т. пл. 33 – 34 °С. ИК спектр, v, см⁻¹: 3090, 3061, 3030, 3007 (*CHAr*); 2967, 2940, 2899, 2878, 2840 (*CHAlk*); 2776, 2746 (*CHCHO*); 1694 (*C=O*); 1594, 1584, 1480, 1390, 1367 (*Ar*); 1455, 1439 (*CH*₂); 1307, 1267, 1247, 1190, 1081, 1062, 968 (*C-O*); 919, 908, 858, 780, 765, 753, 698 (*CHAr*). Спектр ЯМР ¹*H*, δ , м.д.: 3,94 с (*3H*, *MeO*), 5,20 с (*2H*, *CH*₂), 7,10 – 7,45 м (*8H*, *C*₆*H*₃ и *C*₆*H*₅), 10,27 с (*1H*, *CHO*). Масс-спектр: m/z 242 [M]+. Найдено, %: *C* 74,66; *H* 5,99. *C*₁₅*H*₁₄*O*₃. Вычислено, %: *C* 74,36; *H* 5,82. М 242,27.

2,4-Диэтоксибензальдегид (IV6). Выход 85 %, т. пл. 70 – 71 °C. ИК спектр, v, см⁻¹: 3090, 3075, 3040 (*CHAr*); 2981, 2950, 2931, 2902, 2859 (*CHAlk*); 2773(*CHCHO*); 1672 (*C=O*); 1606, 1590, 1570, 1498, 1402 (*Ar*); 1470, 1760, 1452, 1442 (*CH*₂); 1328, 1262, 1230. 1187, 1117, 1095, 1045, 999 (*C-O*); 915, 854, 819, 808, 676 (*CHAr*). Спектр ЯМР ¹*H*, δ , м.д.:

- 1,30-1,57 м (6H, 2Me), 4.88-4.30 м (4H, 2CH₂), 6.25-7.85 м (3H, C₆H₃), 10,30 с (1H, CHO). Масс-спектр: m/z 194 [M]+. Найдено, %: C 68,43; H 7,34. $C_{II}H_{I4}O_3$. Вычислено, %: C 68,02; H 7,27. М 194,23.
- **2,4-**Ди-н-бутоксибензальдегид (IVв). Выход 81 %, d_{20}^{20} 1,0488, n_{D}^{20} 1,5280. ИК спектр, v, см⁻¹: 3093, 3070, 3035 (*CHAr*); 2959, 2935, 2873 (*CHAlk*); 2761 (*CHCHO*); 1679, 1630 (*C=O*); 1601, 1576, 1505, 1390 (*Ar*); 1467, 1436 (*CH*₂); 1334, 1293, 1261, 1224, 1187, 1115, 1067, 1010, 987 (*C-O*); 817, 805, 760 (*CHAr*). Спектр ЯМР ¹*H*, δ , м.д.: 0.97 т (*6H*, *2Me*), 1,15 2,10 м [8*H*, 2(*CH*₂)₂], 3,80 4,30 м (4*H*, 2*CH*₂*O*), 6,27 7,88 м (3*H*, *C*₆*H*₃), 10,31 с (1*H*, *CHO*). Масс-спектр: m/z 250 [М]+. Найдено, %: *C* 72,29; *H* 9,03. $C_{15}H_{22}O_3$. Вычислено, %: $C_{71,97}$; *H* 8,86. М 250,33.
- **2,4-Дибензилоксибензальдегид (IVr).** Выход 75 %, т. пл. 85 86 °C. ИК спектр, v, см⁻¹: 3090, 3065, 3034 (*CHAr*); 2964, 2925, 2870, 2847 (*CHAlk*); 2764 (*CHCHO*); 1670 (*C=O*); 1607, 1578, 1501, 1436, 1369 (*Ar*); 1460 (*CH*₂); 1331, 1260, 1218, 1185, 1100, 1016 (*C-O*); 833, 818, 740, 731, 698, 674 (*CHAr*). Спектр ЯМР ¹*H*, δ, м.д.: 5,12 с и 5,15 с (*4H*, 2*CH*₂*O*), 6,50 7,95 м (*13H*, 2*C*₆*H*₅ и *C*₆*H*₃), 10.42 с (*1H*, *CHO*). Масс-спектр: m/z 318 [M]+. Найдено, %: *C* 79,61; *H* 5,92. *C*₂₁*H*₁₈*O*₃. Вычислено, %: *C* 79,22; *H* 5,70. М 318,37.

3-н-Бутокси-4-метоксибензальдегид (Vб). Выход 83 %, т. пл. 38 – 39 °С. ИК спектр, v, см⁻¹: 3080, 3011 (*CHAr*); 2959, 2935, 2872, 2841 (*CHAlk*); 2766 (*CHCHO*); 1687 (*C=O*); 1587, 1512, 1394 (*Ar*); 1463, 1437 (*CH*₂); 1341, 1267, 1240, 1163, 1135, 1022 (*C-O*); 867, 810, 740 (*CHAr*). Спектр ЯМР ¹*H*, δ , м.д.: 0,92 т (*3H*, *Me*), 1,22 – 2,00 м [*4H*, (*CH*₂)₂], 3.81 с (*3H*, *MeO*), 4,00 т (*2H*, *CH*₂*O*), 6,72 – 7,45 м (*3H*, *C*₆*H*₃), 9,77 с (*1H*, *CHO*). Масс-спектр: m/z 208 [М]+. Найдено, %: *C* 69,53; *H* 7,96. $C_{12}H_{16}O_3$. Вычислено, %: *C* 69,21; *H* 7,74. М 208.25.

3-Бензилокси-4-метоксибензальдегид (Vв). Выход 82 %, т. пл. 64 – 65 °С. ИК спектр, v, см⁻¹: 3072, 3046, 3035, 3009 (СНАг); 2964, 2932, 2872, 2840, 2812 (*CHAlk*); 2749, 2718 (*CHCHO*); 1677 (*C=O*); 1596, 1583, 1506, 1390, 1383 (*Ar*); 1457, 1432 (*CH*₂); 1260, 1236, 1159, 1009 (*C-O*); 872, 851, 807, 766, 736, 697, 640 (*CHAr*). Спектр ЯМР ¹*H*, δ, м.д.: 3,96 с (*3H*, *MeO*), 5.19 с (*2H*, *CH*₂), 6,99 – 7,48 м (*8H*, *C*₆*H*₃ и *C*₆*H*₅), 9,82 с (*1H*, *CHO*). Массспектр: m/z 242 [M]+. Найдено, %: *C* 74,79; *H* 5,92. *C*₁₅*H*₁₄*O*₃. Вычислено, %: *C* 74,36; *H* 5,82. М 242,27.

3-Метокси-4-этоксибензальдегид (VI6). Выход 88 %, т. пл. 57 – 58 °C. ИК спектр, v, см⁻¹: 3083, 3057, 3040, 3000 (*CHAr*); 2980, 2942, 2094, 2890, 2855 (*CHAlk*); 2767 (*CHCHO*); 1699, 1683, 1675 (*C=O*); 1598, 1584, 1509, 1393 (*Ar*); 1477, 1463 (*CH*₂); 1266, 1238, 1137, 1044, 1028 (*C-O*); 921, 860, 804, 733, 656 (*CHAr*). Спектр ЯМР ¹*H*, δ , м.д.: 1,46 т (*3H*, *Me*), 3.89 с (*3H*, *MeO*), 4,15 к (*2H*, *CH*₂*O*), 6,85 – 7,50 м (*3H*, *C*₆*H*₃), 9,80 с (*1H*, *CHO*). Массспектр: m/z 180 [M]+. Найдено, %: *C* 67,04; *H* 6,66. $C_{10}H_{12}O_3$. Вычислено, %: *C* 66,65; *H* 6,71. М 180.20.

3-Метокси-4-изо-пропоксибензальдегид (VIв). Выход 68 %, d_{20}^{20} 1.0004, n_{D}^{20} 1,5490. ИК спектр, v, см⁻¹: 3080, 3024 (*CHAr*); 2979, 2936, 2833 (*CHAlk*); 2740, 2729 (*CHCHO*); 1685 (*C=O*); 1594, 1584, 1507, 1386 (*Ar*); 1268, 1237, 1135, 1109, 1033, 950 (*C-O*); 866, 813, 781, 731, 655 (*CHAr*). Спектр ЯМР *1H*, δ , м.д.: 1,34 д (*6H*, *Me₂C*), 3,84 с (*3H*, *MeO*), 4,61 септ (*1H*, *CH*), 6,76 – 7,42 м (*3H*, *C₆H₃*), 9,77 с (*1H*, *CHO*). Масс-спектр: m/z 194 [M]+. Найдено, %: *C* 68,31; *H* 7.46. $C_{II}H_{I4}O_3$. Вычислено, %: *C* 68,02; *H* 7,27. М 194,23.

4-н-Бутокси-3-метоксибензальдегид (VIг). Выход 85 %, т. пл. 31-32 °C. ИК спектр, v, см⁻¹: 3072, 3060, 3003 (*CHAr*); 2959, 2937, 2873, 2835 (*CHAlk*); 2761, 2732 (*CHCHO*); 1682 (*C=O*); 1596, 1585, 1510, 1397 (*Ar*); 1466, 1424 (*CH*₂); 1332, 1267, 1239, 1159, 1136, 1023 (*C-O*); 868, 819, 772, 731 (*CHAr*). Спектр ЯМР ¹*H*, δ , м.д.: 0.96 т (*3H*, *Me*), 1,25 – 2,10 м [4H, (*CH*₂)₂], 3,89 с (*3H*, *MeO*), 4.11 т (*2H*, *CH*₂*O*), 6,85 – 7,55 м (*3H*, *C*₆*H*₃), 9,81 с (*1H*, *CHO*). Масс-спектр: m/z 208 [М]+. Найдено, %: *C* 69,60; *H* 7,87. $C_{12}H_{16}O_3$. Вычислено, %: *C* 69,21; *H* 7,74. М 208,25.

4-изо-Бутокси-3-метоксибензальдегид (VIд). Выход 68 %, d_{20}^{20} 0.9842, n_{D}^{20} 1.5460. ИК спектр, v, cm⁻¹: 3080, 3060, 3004 (*CHAr*); 2960, 2937, 2918, 2874, 2834 (*CHAlk*); 2762,

2730 (*CHCHO*); 1683 (*C=O*); 1596, 1586, 1510, 1397 (*Ar*); 1467, 1424 (*CH*₂); 1341, 1268, 1239, 1159, 1136, 1021 (*C-O*); 867, 809, 782, 731, 653 (*CHAr*). Спектр ЯМР I *H*, δ , м.д.: 1,03 д (*6H*, *Me*₂*C*), 1,70 – 2,45 м (*1H*, *CH*), 3,84 д (*2H*, *CH*₂), 3,89 с (*3H*, *MeO*), 6,82 – 7,53 м (*3H*, *C*₆*H*₃), 9,82 с (*1H*, *CHO*). Масс-спектр: m/z 208 [M]+. Найдено, %: *C* 69,33; *H* 7,64. $C_{12}H_{16}O_3$. Вычислено, %: *C* 69,21; *H* 7,74. М 208,25.

4-изо-Амилокси-3-метоксибензальдегид (VIe). Выход 70 %, d_{20}^{20} 1.0967, n_{D}^{20} 1.5445. ИК спектр, v, cm⁻¹: 3070, 3056, 3003 (*CHAr*); 2956, 2936, 2871, 2835 (*CHAlk*); 2763, 2729 (*CHCHO*); 1683 (*C* = *O*); 1596, 1586, 1510, 1397 (*Ar*); 1466, 1425 (*CH*₂); 1340, 1267, 1240, 1159, 1136, 1034, 1009, 977 (*C-O*); 871, 812, 766, 731 (*CHAr*). Спектр ЯМР ¹*H*, δ , м.д.: 0.92 д (*6H*, *Me*₂*C*), 1,55 – 1,95 м (*3H*, *CH*₂ *u CH*), 3,84 с (*3H*, *MeO*), 4,06 т (*2H*, *CH*₂*O*), 6,85 – 7,41 м (*3H*, *C*₆*H*₃), 9,77 с (*1H*, *CHO*). Масс-спектр: m/z 222 [М]+. Найдено, %: *C* 70,65; *H* 8,29. $C_{13}H_{18}O_{3}$. Вычислено, %: *C* 70,24; *H* 8,16. М 222,28.

4-н-Гексилокси-3-метоксибензальдегид (VIж). Выход 89 %, т. пл. 34 – 35 °C. ИК спектр, v, см⁻¹: 3070, 3058, 3004 (*CHAr*); 2957, 2931, 2871, 2858 (*CHAlk*); 2762, 2722 (*CHCHO*); 1685 (*C=O*); 1596, 1586, 1510, 1396 (*Ar*); 1466, 1424 (*CH*₂); 1340, 1268, 1240, 1159, 1136, 1035, 1020 (*C-O*); 868, 807, 782, 731 (*CHAr*). Спектр ЯМР ¹*H*, δ , м.д.: 0.90 т (*3H*, *Me*), 1,15 – 1,60 м [6H, (*CH*₂)₃], 1,85 т (*2H*, *CH*₂), 3,91 с (*3H*, *MeO*), 4,09 т (*2H*, *CH*₂*O*), 6,78 – 7,51 м (*3H*, *C*₆*H*₃), 9,83 с (*1H*, *CHO*). Масс-спектр: m/z 236 [М]+. Найдено, %: *C* 71,38; *H* 8,72. $C_{14}H_{20}O_{3}$. Вычислено, %: *C* 71,16; *H* 8,53. М 236,31.

3-Метокси-4-н-октилоксибензальдегид (VI3). Выход 86 %, т. пл. 30 – 31 °C. ИК спектр, v, см⁻¹: 3081, 3005 (*CHAr*); 2978, 2956, 2934, 2919, 2875, 2854 (*CHAlk*); 2762, 2723 (*CHCHO*); 1689, 1684, 1670 (*C=O*); 1596, 1585, 1510, 1392 (*Ar*); 1467, 1426 (*CH*₂); 1276, 1270, 1238, 1159, 1136, 1028 (*C-O*); 868, 805, 732, 658 (*CHAr*). Спектр ЯМР ¹*H*, δ, м.д.: 0.89 т (*3H*, *Me*), 1,12 – 1,70 м [*10H*, (*CH*₂)₅], 1,91 т (*2H*, *CH*₂), 3,93 с (*3H*, *MeO*), 4,10 т (*2H*, *CH*₂*O*), 6,78 – 7,52 м (*3H*, *C*₆*H*₃), 9.85 с (*1H*, *CHO*). Масс-спектр: m/z 264 [M]+. Найдено, %: *C* 73,03; *H* 9,19. *C*₁₆*H*₂₄*O*₃. Вычислено, %: *C* 72,69; *H* 9,15. М 264,36.

3-Метокси-4-н-пентадеканоксибензальдегид (VIи). Выход 82 %, т. пл. 44 – 45 °С. ИК спектр, v, см⁻¹: 3078, 2998 (*CHAr*); 2960, 2917, 2850 (*CHAlk*); 2756, 2740 (*CHCHO*); 1698, 1679 (*C=O*); 1596, 1585, 1512, 1392 (*Ar*); 1467, 1457, 1426 (*CH*₂); 1272, 1236, 1159, 1141, 1071, 1027, 1009 (*C-O*); 880, 860, 802, 732, 720, 658 (*CHAr*). Спектр ЯМР ¹*H*, δ, м.д.: 0,89 т (*3H*, *Me*), 1,26 уш. с [*24H*, (*CH*₂)₁₂], 1,89 т (*2H*, *CH*₂), 3,93 с (*3H*, *MeO*), 4,10 т (*2H*, *CH*₂*O*), 6,87 – 7,52 м (*3H*, *C*₆*H*₃), 9,85 с (*1H*, *CHO*). Масс-спектр: m/z 362 [M]+. Найдено, %: *C* 76,64; *H* 10,88. *C*₂₃*H*₃₈*O*₃. Вычислено, %: *C* 76,20; *H* 10,56. М 362,55.

3-Метокси-4-пропаргилоксибензальдегид (VIк). Выход 79 %, т. пл. 83 – 84 °C. ИК спектр, v, см⁻¹: 3249 (\equiv C-H); 3077, 3009 (CHAr); 2977, 2960, 2923, 2865, 2852, 2830 (CHAlk); 2765, 2740 (CHCHO); 2127 ($C\equiv$ C); 1702, 1688, 1669 (C=O); 1599, 1588, 1508, 1409, 1380 (Ar); 1471, 1451, 1432 (CH2); 1281, 1267, 1244, 1158, 1135, 1035, 1003 (C-O); 862, 805, 735, 692, 658 (CHAr). Спектр ЯМР 1 H, δ , м.д.: 2,57 т (1H, (\equiv CH), 3,93 с (3H, MeO), 4,85 д (2H, CH₂), 7,05 – 7,58 м (3H, C₆H₃), 9,86 с (1H, CHO). Масс-спектр: m/z 190 [М]+. Найдено, %: C 69,87; C 547. C 69,87; C

3-Метокси-4-циклогексилоксибензальдегид (VIл). Выход 66 %, d_{20}^{20} 1,1457, n_{D}^{20} 1,5625. ИК спектр, v, см⁻¹: 3077, 3004 (*CHAr*); 2936, 2857 (*CHAlk*); 2757, 2730 (*CHCHO*); 1683 (*C=O*); 1595, 1583, 1506, 1424, 1396 (*Ar*); 1465, 1452 (*CH2*); 1336, 1267, 1237, 1159, 1136, 1033, 967 (*C-O*); 866, 812, 782, 730, 652 (*CHAr*). Спектр ЯМР ¹*H*, δ , м.д.: 0,95 – 2,25 м [10*H*, (*CH*₂)₅], 3,83 с (3*H*, *MeO*), 4,32 уш. с (1*H*, *CH*), 6,80 – 7,42 м (3*H*, *C*₆*H*₃), 9.76 с (1*H*, *CHO*). Масс-спектр: m/z 234 [М]+. Найдено, %: *C* 72,18; *H* 8,01. *C*₁₄*H*₁₈*O*₃. Вычислено, %: *C* 71,77; *H* 7,74. М 234,29.

3-Метокси-4-циклогентилоксибензальдегид (VIм). Выход 69 %, d_{20}^{20} 1,0888, n_{D}^{20} 1,5675. ИК спектр, v, см⁻¹: 3076, 3002 (*CHAr*); 2931, 2857 (*CHAlk*); 2756, 2724 (*CHCHO*); 1682 (*C=O*); 1595, 1583, 1505, 1424, 1395 (*Ar*); 1464 (*CH2*); 1337, 1266, 1238, 1158, 1136, 1033, 999 (*C-O*); 867, 810, 782, 729, 652 (*CHAr*). Спектр ЯМР ¹*H*, δ , м.д.: 1,15 – 2,25 м [12H, (*CH*₂)₆], 3,86 с (3H, *MeO*), 4,49 уш. с (1H, *CH*), 6,76 – 7,49 м (3H, *C*₆*H*₃), 9,79 с (1H,

CHO). Масс-спектр: m/z 248 [M]+. Найдено, %: *C* 72,83; *H* 8,27. *C*₁₅*H*₂₀*O*₃. Вычислено, %: *C* 72,55; *H* 8,12. M 248,32.

4-Бензилокси-3-метоксибензальдегид (VIн). Выход 79 %, т. пл. 62 – 63 °С. ИК спектр, v, см⁻¹: 3095, 3080, 3060, 3048, 3035, 3013 (*CHAr*); 2972, 2949, 2936, 2870, 2839 (*CHAlk*); 2762, 2733 (*CHCHO*); 1694, 1674 (*C=O*); 1597, 1583, 1505, 1425, 1400, 1384 (*Ar*); 1465 (*CH*₂); 1348, 1277, 1261, 1236, 1159, 1133, 1031, 989 (*C-O*); 919, 866, 856, 813, 748, 728, 698, 657 (*CHAr*). Спектр ЯМР *IH*, δ, м.д.: 3,91 с (*3H*, *MeO*), 5,21 с (*2H*, *CH*₂), 6,77 – 7,60 м (*8H*, *C*₆*H*₃ *u C*₆*H*₅), 9,81 с (*1H*, *CHO*). Масс-спектр: m/z 242 [M]+. Найдено, %: *C* 74,68; *H* 6,05. *C*₁₅*H*₁₄*O*₃. Вычислено, %: *C* 74,36; *H* 5,82. М 242,27.

3,4-Диэтоксибензальдегид (VIIб). Выход 84 %, d_{2020} 1,1090, n_D^{20} 1,5555. ИК спектр, v, см⁻¹: 3079, 3040, 3020 (*CHAr*); 2982, 2935, 2901, 2883, 2822 (*CHAlk*); 2748, 2725 (*CHCHO*); 1686 (*C* = *O*); 1595, 1585, 1509, 1436, 1397 (*Ar*); 1476 (*CH*₂); 1338, 1265, 1237, 1172, 1134, 1140 (*C-O*); 919, 899, 869, 807, 791, 742, 727, 655 (*CHAr*). Спектр ЯМР ¹*H*, δ , м.д.: 1,30 – 1,62 м (*6H*, *2Me*), 3,95 – 4,35 м (*4H*, *2CH*₂), 6,88 – 7,52 м (*3H*, *C*₆*H*₃), 9,81 с (*1H*, *CHO*). Масс-спектр: m/z 194 [М]+. Найдено, %: *C* 68,45; *H* 7,39. $C_{II}H_{I4}O_3$. Вычислено, %: *C* 68,02; *H* 7,27. М 194,23.

4-изо-Пропокси-3-этоксибензальдегид (VIIв). Выход 69 %, d_{20}^{20} 1,0387, n_D^{20} 1.5445. ИК спектр, v, cm⁻¹: 3078, 3010 (*CHAr*); 2980, 2934, 2901, 2879, 2820 (*CHAlk*); 2740, 2727 (*CHCHO*); 1689 (*C=O*); 1595, 1582, 1505, 1435, 1387 (*Ar*); 1467 (*CH*₂); 1334, 1267, 1237, 1169, 1133, 1107, 1043 (*C-O*); 948, 899, 869, 813, 789, 740,655 (*CHAr*). Спектр ЯМР *IH*, δ , м.д.: 1,26 д (*6H*, *Me*₂*C*), 1,30 т (*3H*, *Me*), 3,99 к (*2H*, *CH*₂), 4,52 септ (*1H*, *CH*), 6,75 – 7,40 м (*3H*, *C*₆*H*₃), 9.70 с (*1H*, *CHO*). Масс-спектр: m/z 208 [М]+. Найдено, %: *C* 69,62; *H* 7,88. $C_{12}H_{16}O_3$. Вычислено, %: *C* 69,21; *H* 7,74. М 208,25.

4-н-Бутокси-3-этоксибензальдегид (VIIг). Выход 84 %, т. пл. 36 – 37 °C. ИК спектр, v, см⁻¹: 3080, 3070, 3055, 3005 (*CHAr*); 2988, 2967, 2955, 2918, 2870, 2848 (*CHAlk*); 2765, 2740 (*CHCHO*); 1683 (*C=O*); 1597, 1582, 1511, 1435, 1393 (*Ar*); 1463 (*CH*₂); 1277, 1240, 1165, 1132, 1061, 1045, 1020, 994 (*C-O*); 896, 870, 820, 804, 743, 657 (*CHAr*). Спектр ЯМР ¹*H*, δ, м.д.: 0,99 т (*3H*, *Me*), 1.46 т (*3H*, *Me*), 1,30 – 2,10 м [*4H*, (*CH*₂)₂], 3,90 – 4,32 м (*4H*, 2*CH*₂*O*), 6,82 – 7,55 м (*3H*, *C*₆*H*₃), 9,82 с (*1H*, *CHO*). Масс-спектр: m/z 222 [М]+. Найдено, %: *C* 70,54; *H* 8,32. *C*₁₃*H*₁₈*O*₃. Вычислено, %: *C* 70,24; *H* 8,16. М 222,28.

4-изо-Бутокси-3-этоксибензальдегид (VIIд). Выход 66 %, d_{20}^{20} 0,9666, n_{D}^{20} 1,5350. ИК спектр, v, см⁻¹: 3080, 3007 (*CHAr*); 2972, 2961, 2932, 1918, 2875, 2820 (*CHAlk*); 2758, 2724 (*CHCHO*); 1689 (*C=O*); 1595, 1584, 1510, 1436, 1397 (*Ar*); 1471 (*CH*₂); 1339, 1269, 1238, 1168, 1134, 1042, 1023, 999 (*C-O*); 899, 869, 809, 788, 742, 653 (*CHAr*). Спектр ЯМР ¹*H*, δ , м.д.: 1.06 д (*6H*, *Me*₂*C*), 1.46 т (*3H*, *Me*), 1,60 – 2,45 м (*1H*, *CH*), 3,89 д (*2H*, *CH*₂), 4,17 к (*2H*, *CH*₂), 6,84 – 7,51 м (*3H*, *C*₆*H*₃), 9,83 с (*1H*, *CHO*). Масс-спектр: m/z 222 [M]+. Найдено, %: *C* 70,06; *H* 8,30. *C*₁₃*H*₁₈*O*₃. Вычислено, %: *C* 70,24; *H* 8,16. М 222,28.

4-изо-Амилокси-3-этоксибензальдегид (VIIe). Выход 71 %, d_{20}^{20} 1,0088, n_{D}^{20} 1.5310. ИК спектр, v, см⁻¹: 3080, 3010 (*CHAr*); 2957, 2933, 2872, 2820 (*CHAlk*); 2765, 2722 (*CHCHO*); 1689 (*C=O*); 1595, 1585, 1511, 1436, 1396 (*Ar*); 1474 (*CH*₂); 1339, 1267, 1239, 1169, 1134, 1043, 1008, 998 (*C-O*); 899, 870, 812, 790, 742, 655 (*CHAr*). Спектр ЯМР ¹*H*, δ , м.д.: 0.92 д (*6H*, *Me*₂*C*), 1,44 т (*3H*, *Me*), 1,65 – 2,03 м (*3H*, *CH*₂ *u CH*), 3,90 – 4,28 м (*4H*, *2CH*₂*O*), 6,75 – 7,48 м (*3H*, *C*₆*H*₃), 9,81 с (*1H*, *CHO*). Масс-спектр: m/z 236 [М]+. Найдено, %: *C* 71,45; *H* 8,52. $C_{14}H_{20}O_{3}$. Вычислено, %: *C* 71,16; *H* 8,53. М 236,31.

4-н-Гексилокси-3-этоксибензальдегид (VIIж). Выход 88 %, т. пл. 41 – 42 °C. ИК спектр, v, см-1: 3080, 3030 (*CHAr*); 2990, 2980, 2968, 2955, 2932, 2870, 2856 (*CHAlk*); 2776, 2734 (*CHCHO*); 1682 (*C=O*); 1596, 1583, 1511, 1436, 1394 (*Ar*); 1462 (*CH*₂); 1272, 1241, 1166, 1132, 1066, 1042, 991 (*C-O*); 940, 901, 867, 820, 805, 739, 660 (*CHAr*). Спектр ЯМР *IH*, δ, м.д.: 0,91 т (*3H*, *Me*), 1,20 – 1,60 м [*6H*, (*CH*₂)₃], 1,47 т (*3H*, *Me*), 1,95 т (*2H*, *CH*₂), 3,90 – 4,40 м (*4H*, *2CH*₂*O*), 6,85 – 7,55 м (*3H*, *C*₆*H*₃), 9,83 с (*1H*, *CHO*). Масс-спектр: m/z 250 [М]+. Найдено, %: *C* 72,30; *H* 8,99. *C*₁₅*H*₂₂*O*₃. Вычислено, %: *C* 71,97; *H* 8,86. М 250,33.

4-н-Октилокси-3-этоксибензальдегид (VII3). Выход 85 %, т. пл. 34 – 35 °C. ИК спектр, v, см⁻¹: 3083, 3005 (*CHAr*); 2978, 2946, 2922, 2871, 2853 (*CHAlk*); 2760, 2735 (*CHCHO*); 1686, 1674 (*C=O*); 1596, 1584, 1510, 1437, 1395 (*Ar*); 1475 (*CH*₂); 1270, 1236, 1166, 1132, 1110, 1041, 1022, 997 (*C-O*); 896, 867, 806, 742, 730, 659 (*CHAr*). Спектр ЯМР ¹*H*, δ, м.д.: 0,91 т (*3H*, *Me*), 1,18 – 1,66 м [*10H*, (*CH*₂)₅], 1,48 т (*3H*, *Me*), 1,94 т (*2H*, *CH*₂), 3,92 – 4,46 м (*4H*, *2CH*₂*O*), 6,80 – 7,58 м (*3H*, *C*₆*H*₃), 9,83 с (*1H*, *CHO*). Масс-спектр: m/z 278 [М]+. Найдено, %: *C* 73,87; *H* 9,71. *C*₁₇*H*₂₆*O*₃. Вычислено, %: *C* 73,34; *H* 9,41. М 278.39.

4-н-Пентадеканокси-3-этоксибензальдегид (VIIи). Выход 84 %, т. пл. 36 – 37 °С. ИК спектр, v, см⁻¹: 3080, 3015 (*CHAr*); 2979, 2952, 2919, 2865, 2849 (*CHAlk*); 2762, 2733 (*CHCHO*); 1686, 1673 (*C=O*); 1595, 1584, 1509, 1437, 1401 (*Ar*); 1475, 1462 (*CH*₂); 1269, 1236, 1165, 1130, 1110, 1041, 1012, 997 (*C-O*); 898, 870, 807, 742, 724, 657 (*CHAr*). Спектр ЯМР *IH*, δ, м.д.: 0.88 т (*3H*, *Me*), 1,26 уш. с [*24H*, (*CH*₂)₁₂], 1,48 т (*3H*, *Me*), 1,90 т (*2H*, *CH*₂), 3,90 – 4,30 м (*4H*, *2CH*₂*O*), 6,82 – 7,52 м (*3H*, *C*₆*H*₃), 9,83 с (*1H*, *CHO*). Масс-спектр: m/z 376 [М]+. Найдено, %: *C* 76,92; *H* 10,68. *C*₂₄*H*₄₀*O*₃. Вычислено, %: *C* 76,55; *H* 10,71. М 376,57.

4-Циклогексилокси-3-этоксибензальдегид (VIIк). Выход 66 %, d_{20}^{20} 1.0325, n_D^{20} 1.5550. ИК спектр, v, см⁻¹: 3078, 3056, 3008 (*CHAr*); 2979, 2936, 2858, 2821 (*CHAlk*); 2764, 2725 (*CHCHO*); 1689 (*C=O*); 1594, 1582, 1505, 1435, 1394 (*Ar*); 1460 (*CH*₂); 1267, 1236, 1169, 1134, 1041, 1020 (*C-O*); 899, 869, 812, 788, 742, 652 (*CHAr*). Спектр ЯМР ¹*H*, δ , м.д.: 0,95 – 2,25 м [10*H*, (*CH*₂)₅], 1,43 т (3*H*, *Me*), 4,12 к (2*H*, *CH*₂), 4,37 уш. с (1*H*, *CH*), 6,82 – 7,48 м (3*H*, *C*₆*H*₃), 9,81 с (1*H*, *CHO*). Масс-спектр: m/z 248 [М]+. Найдено, %: *C* 72,89; *H* 8.06. $C_{15}H_{20}O_3$. Вычислено, %: *C* 72,55; *H* 8,12. М 248,32.

4-Циклогептилокси-3-этоксибензальдегид (VIIл). Выход 74 %, d_{20}^{20} 1.0774, n_{D}^{20} 1.5560. ИК спектр, v, см⁻¹: 3070, 3006 (*CHAr*); 2979, 2929, 2859, 2820 (*CHAlk*); 2765, 2724 (*CHCHO*); 1688 (*C=O*); 1594, 1581, 1505, 1435, 1395 1394 (*Ar*); 1460 (*CH*₂); 1266, 1236, 1166, 1133, 1043, 995 (*C-O*); 900, 871, 811, 785, 743, 660 (*CHAr*). Спектр ЯМР ¹*H*, δ , м.д.: 1.05 – 2,25 м [12H, (*CH*₂)₆], 1,42 т (3H, Me), 4,09 к (2H, *CH*₂), 4,45 уш. с (1H, *CH*), 6,82 – 7,49 м (3H, *C*₆H₃), 9.80 с (1H, *CHO*). Масс-спектр: m/z 248 [М]+. Найдено, %: *C* 72,89; *H* 8,06. $C_{15}H_{20}O_3$. Вычислено, %: *C* 72,55; *H* 8,12. М 248,32.

4-Бензилокси-3-этоксибензальдегид (VIIм). Выход 88 %, т. пл. $66-67^{\circ}$ С. ИК спектр, v, см⁻¹: 3081, 3070, 3055, 3044, (*CHAr*); 2976, 2952, 2933, 2893, 2879, 2816 (*CHAlk*); 2762, 2728 (*CHCHO*); 1686 (*C=O*); 1596, 1585, 1507, 1437, 1397 (*Ar*); 1467, 1455 (*CH*₂); 1345, 1268, 1227, 1169, 1135, 1042, 1014 (*C-O*); 925, 897, 863, 809, 742, 701, 654 (*CHAr*). Спектр ЯМР 1H, δ , м.д.: 1.48 т (3H, Me), 4,17 к (2H, CH₂), 5,23 с (2H, CH₂), 6,85 –7,70 м (8H, C₆H₅ и C₆H₃), 9.82 с (1H, CHO). Масс-спектр: m/z 256 [М]+. Найдено, %: *C* 75,14; *H* 6,43. $C_{16}H_{16}O_3$. Вычислено, %: *C* 74,98; *H* 6,29. М 256,30.

3,4-Ди-н-бутоксибензальдегид (VIII6). Выход 80 %, т. пл. 27 – 28 °C. ИК спектр, v, см⁻¹: 3083, 3009 (*CHAr*); 2958, 2934, 2872 (*CHAlk*); 2755, 2730 (*CHCHO*); 1687, 1673 (*C=O*); 1596, 1585, 1510, 1394 (*Ar*); 1466, 1438 (*CH2*); 1276, 1237, 1167, 1134, 1064, 1026, 970 (*C-O*); 867, 807, 761, 740, 659 (*CHAr*). Спектр ЯМР ¹*H*, δ , м.д.: 0.96 т (*6H*, *2Me*), 1,12 – 2,08 м [8*H*, 2(*CH*₂)₂], 3,83 – 4,20 м (4*H*, 2*CH*₂*O*), 6,80 – 7,55 м (3*H*, *C*₆*H*₃), 9,80 с (1*H*, *CHO*). Масс-спектр: m/z 250 [М]+. Найдено, %: *C* 72,10; *H* 8,76. $C_{15}H_{22}O_3$. Вычислено, %: *C* 71,97; *H* 8,86. М 250,33.

3,4-Дибензилоксибензальдегид (VIIIв). Выход 72 %, т. пл. 87 – 88 °С. ИК спектр, v, см⁻¹: 3090, 3081, 3075, 3040, 30026, 3009 (*CHAr*); 2930, 2917, 2894, 2854, 2840, 2819 (*CHAlk*); 2762, 2726 (*CHCHO*); 1676 (*C=O*); 1596, 1581, 1512, 1498, 1435, 1397, 1386 (*Ar*); 1453 (*CH*₂); 1282, 1270, 1246, 1231, 1165, 1135, 1023 (*C-O*); 860, 845, 821, 758, 736, 697, 660, 630, 590 (*CHAr*). Спектр ЯМР ¹*H*, δ, м.д.: 5,21 с и 5,25 с (*4H*, *2CH*₂*O*), 6,85 – 7,70 м (*13H*, *2C*₆*H*₅ и *C*₆*H*₃), 9,82 с (*1H*, *CHO*). Масс-спектр: m/z 318 [М]+. Найдено, %: *C* 79,45; *H* 6,00. *C*₂₁*H*₁₈*O*₃. Вычислено, %: *C* 79,22; *H* 5,70. М 318,37.

ВЫВОДЫ

- 1. Разработан удобный масштабируемый технологичный способ получения моно- и диалкоксибензальдегидов.
- 2. Состав и строение синтезированных моно- и диалкоксибензальдегидов доказано данными спектров ИК и ЯМР ^{I}H , данными элементного анализа и хромато-масс-спектрометрии.
- 3. Ряд синтезированных диалкоксибензальдегидов обладает интенсивными ароматами фруктово-ягодной или цветочной направленности и являются перспективными соединениями для использования их в качестве ароматизаторов, душистых веществ и отдушек в пищевой и парфюмерной промышленности.
- 4. Моно- и диалкоксибензальдегиды могут служить доступными исходными соединениями для создания на их основе новых биологически активных веществ и разработки лекарственных препаратов медицинского или сельскохозяйственного назначения.

Список использованных источников

- 1. Препаративный синтез алканоатов ванилина и ванилаля / Е. А. Дикусар [и др.] // Журн. прикл. хим. 2005. Т. 78, Вып. 1. С. 122-126.
- 2. Производные гидроксибензальдегидов ванилинового ряда: синтез, свойства и применение / Е. А. Дикусар [и др.] // Химресурс. 2010. № 6 (13). С. 39-47.
- 3. Функциональнозамещенные производные ванилина / Е. А. Дикусар [и др.] // Весці НАН Б. Сер. хім. навук. 2011. № 4. С. 105-120.
- 4. Першина, Л. А. Ванилин и его производные как потенциальное сырье для синтеза биологически активных соединений / Л. А Першина, М. В. Ефанов // Хим. раст. сыр. -1997. -№ 2. C. 42-45.
- 5. Дейнеко, И. П. Утилизация лигнинов: достижения, проблемы и перспективы / И. П. Дейнеко // Хим. раст. сыр. 2012. № 1. С. 5-20.
- 6. Замещенные бензальдегиды ванилинового ряда в органическом синтезе: получение, применение, биологическая активность / Е. А. Дикусар [и др.]. Минск : Право и экономика, 2011. 446 с.
- 7. Бензальдегиды ванилинового ряда. Синтез производных, применение и биологическая активность / Е. А. Дикусар [и др.] // Saarbrücken, Germany: LAP LAMBERT Academic Publishing GmbH & Co. KG, 2012. 612 с.
- 8. Ворожцов, Н. Н. Основы синтеза промежуточных продуктов и красителей / Н. Н. Ворожцов. Москва : Госхимиздат, 1955. 840 с.
- 9. Словарь органических соединений: строение, физические и химические свойства важнейших органических соединений и их призводных / под ред. И. Хейльборн и Г. М. Бэнбери. Москва: Изд-во иностранной литературы, 1949. Т. 1. 1072 с.; Т. 2. 982 с.; Т. 3. 978 с.
- 10. Вацуро, К. В. Именные реакции в органической химии / К. В. Вацуро, Г. Л. Мищенко. Москва : Химия, 1976. 528 с.
- 11. Берлин, А. Я. Техника лабораторной работы в органической химии / А. Я. Берлин. Москва : Химия, 1973. 368 с.
- 12. Дикусар, Е. А. Функционально-замещенные производные ванилина / Е. А. Дикусар, В. И. Поткин, Н. Г. Козлов // Матер. докл. Всеросс. конф. «Пищевые добавки и современные технологии переработки сельскохозяйственного сырья». 1 2 июня 2011 г. Санкт-Петербург: ГНУ ВНИИПАКК Россельхозакадемия, 2011. С. 40-42.
- 13. Dikusar, E. A. Functional substituted vanillin and vanillal derivatives / E. A. Dikusar // Book of Abstracts. International Conference "Renewable Wood and Plant Resources: Chemistry, Technology, Pharmacology, Medicine (RR 2011)," June 21-24, 2011, St. Petersburg, Russia. St. Petersburg, Russia, 2011. P. 280-281.

- 14. Продукты органического синтеза на основе лигнина отхода целлюлознобумажной промышленности / Е. А. Дикусар [и др.] // Техника и технология защиты окружающей среды : материалы докл. Международн. научно-технич. конф. Минск, 26 — 27 октября 2011 г. — Минск : БГТУ, 2011. — С. 31-35.
- 15. Новые ароматизаторы, душистые вещества и отдушки на основе продуктов лесохимии / Е. А. Дикусар [и др.] // Новейшие достижения в области импортозамещения в химической промышленности и производстве строительных материалов и перспективы их развития. Материалы Междунар. научн.-техн. конф. в 2 ч. Минск, 25 27 ноября 2009 г. Минск: БГТУ, 2009. Ч. 2. С. 203-206.
- 16. Скатецкий, В. В. Синтез 4-(10,10-диметил-8-оксо-7,8,9,10,11,12-гексагидробензо[С]акридин-7-ил)-2-метокси(этокси)-фениловых эфиров, обладающих бактерицидной активностью / В. В. Скатецкий, Е. А. Дикусар, Н. Г. Козлов // Новые лекарственные средства: успехи и перспективы. Уфа: Гилем, 2005. С. 61-62.
- 17. Catalytic synthesis of functional substituted 2,2-arylmethylene-bis-(3-hydroxy-5,5-dimethylcyclohex-2-enones) and 3,3,6,6-tetramethyl-9-aryl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-diones / E. A. Dikusar // Book of Abstracts of International Conf. "Catalysis in Organic Synthesis (ICCOS-2012)". September 15-20, 2012. Moscow, Russia. Moscow, 1012. P. 156.
- 18. Синтез и биологическая активность функционально замещенных бензальдегидов ванилинового ряда / Е. А. Дикусар [и др.] // Тез. докл. XXVI Междунар. научнотехнич. конф. «Химические реактивы, реагенты и процессы малотоннажной химии (РЕАКТИВ-2012)». Минск, 2-4 октября 2012 г. Минск, 2012. С. 86.

Статья поступила в редакцию 14.02.2013.

Выходные данные

Дикусар, Е. А. Технология получения моно- и диалкоксибензальдегидов / Е. А. Дикусар, В. И. Поткин, М. Ю. Мурашева, С. К. Петкевич, С. Г. Стёпин // Вестник Витебского государственного технологического университета . — 2013. — № 24. — С. 94.